Department of Computer Science \& Engineering Numerical Question Bank Theory of Computation (CS-505)

Semester: V
INTRUCTIONS. 1. All questions with their solution are submitted till 27 October 2014.

1.	Construct the smallest DFA of the given FA which accepts the same language of given FA.
2.	Convert the following NFA with ϵ transition to DFA.
3.	State and prove Myhill- Nerode theorem.
4.	Convert the following mealy machine into moore machine.
5.	Design FA to check whether the any chosen binary number is divisible by 3 .
6.	Construct DFA equivalent to the given NFA, where δ is as

7.	Construct an DFA for the following regular expression $10+(0+1) 0 * 1$
8.	Show that the language $\left\{0^{\mathrm{p}}, \mathrm{p}\right.$ is prime $\}$ is not regular.
9.	Construct the DFA to the given NFA for which have δ is as
10.	Design PDA corresponding to CFG $\begin{aligned} & S \rightarrow a S a \\ & S \rightarrow b S b \\ & S \rightarrow c \\ & \hline \end{aligned}$
11.	Construct NFA with ϵ moves for the regular expression (0+1)*
12.	Convert the given regular expression into DFA. $(a+b c) * a d$
13.	Simplify the given CFG by using 1) elimination of ϵ transition 2) elimination of unit production 3) elimination of useless symbols $\begin{aligned} & S \rightarrow a A \mid a B \\ & A \rightarrow b A A\|a S\| a \mid \epsilon \\ & B \rightarrow a B B\|b b a\| A \\ & C \rightarrow a B A \end{aligned}$
14.	Write the CFG for the following language: i) $L=\left\{0^{i} 1^{j} 2^{k} \mid i=j\right.$ or $\left.j=k\right\}$ ii) $\quad L=\left\{O^{n} 1^{n}\|n\rangle=1\right\}$
15.	Convert the following grammar into CNF. $\begin{aligned} & S \rightarrow b a A \mid a B \\ & A \rightarrow a b A A\|a S\| a \\ & B \rightarrow a B B \mid b S b b \end{aligned}$
16.	Design a PDA for the language $\left\{L=a^{2 n} b^{n} \mid n>=1\right\}$
17.	State and Prove Pumping lemma for CFG, using some example. Or Explain Pumping Lemma for CFL's with the help of example
18.	Let G be the grammar. $\begin{aligned} & S \rightarrow a B \mid b A \\ & A \rightarrow a\|a S\| b A A \\ & B \rightarrow b\|b S\| a B B \end{aligned}$ For the string aaabbabbba made

	i) LMD ii) RMD iii) Parse Tree
19.	Obtain the CFG for the PDA given below: $A=\left(\left\{q_{0}, q_{1}\right\},\{0,1\},\{A, z\}, d, z,\left\{q_{1}\right\}\right)$ where δ is given as: $\delta(q, 0, z)=\left(q_{0}, A z\right)$ $\delta\left(q_{0}, 1, A\right)=\left(q_{0}, A A\right)$ $\delta\left(q_{0}, 0, A\right)=(q, \epsilon)$
20.	State and prove closure properties of the recursively enumerable language.
21.	Design Turing Machine for the language $\left\{L=a^{n} b^{n} \mid n>=1\right\}$
22.	Construct Turing Machine for the language $\left\{L=a^{m} b^{m} c^{m} \mid m>=1\right\}$
23.	Construct PDA equivalent to following grammar: $\begin{aligned} & S \rightarrow a A A \\ & A \rightarrow a S\|b S\| a \end{aligned}$
24.	Check whether the given grammar is ambiguous or not. $\begin{aligned} & S \rightarrow i C+S \\ & S \rightarrow i C+S c S \\ & S \rightarrow a \\ & S \rightarrow b \end{aligned}$
25.	Construct an DFA accepting the set of all strings over the alphabets $\{0,1\}$, such that number of 0 's divisible by 5 and number of 1 's divisible by 3 .
26.	Construct a PDA that accepts the language $\left\{w w^{R} \mid w\right.$ in $(0,1)^{*}$ and w^{R} is for the reverse of the w.
27.	Write Short note on the following: 1) Hamilton circuit 2) Travelling salesman problem 3) Partitioning problem 4) Untractable problem

