Department of Computer Science & Engineering Numerical Question Bank Theory of Computation (CS-505) Semester: V

INTRUCTIONS. 1. All questions with their solution are submitted till 27 October 2014.

7.	Construct an DFA for the following regular expression				
	$10 \pm (0 \pm 1)0 \times 1$				
8	Show that the language { 0^p n is prime} is not regular				
0.	Show that the language (0, p is prime) is not regular.				
9.	Construct the DFA to the given NFA for which have δ is as				
		0	1		
	р	{p,q}	{p}	_	
	q	{r}	{ r }	_	
	r	{s}	ф		
	*s	{s}	{s}		
10.	Design PDA corresponding to CFG				
	$S \rightarrow aSa$				
	$S \rightarrow bSb$				
11	$S \rightarrow c$	NEA			
11.	Construct NFA with ϵ moves for the regular expression (0+1)*				
12.	Convert the given regular expression into DFA. $(a + b - a) = a - d$				
	$(a+bc)^*ad$				
13.	Simplify the given CFG by using				
	1) elimination of ϵ transition				
	2) elimination of unit production 3) elimination of useless symbols				
	$S \rightarrow aA / aB$				
	$A \rightarrow bAA \mid aS \mid a \mid \epsilon$				
	$B \rightarrow aBB / bba / A$				
	$C \rightarrow aBA$				
14.	Write the CFG for the following language:				
	i) $L = \{0^{i} l^{j} 2^{k} i=j \text{ or } j=k \}$				
1.7	ii) $L = \{ 0^n l^n / n > = 1 \}$				
15.	Convert the following grammar into UNF. $S \rightarrow baA \mid aB$				
	$S \rightarrow UUA \mid dB$ $A \rightarrow ghAA \mid aS \mid a$				
	$B \rightarrow aBB$	r / bSbb			
16.	Design a PDA for the language				
	$\{L = a^{2n}b^n / n > = 1\}$				
17.	State and Prove Pumping lemma for CFG, using some example. Or				
10	Explain Pumping Lemma for CFL's with the help of example				
18.	Let G be the grammar . S > aP / bA				
	$A \rightarrow a / aS / bAA$				
	$B \rightarrow b/bS/aBB$				
	For the str	ing aaabba	<i>bbba</i> mad	le	

	i) LMD				
	ii) RMD				
	iii) Parse Tree				
19.	Obtain the CFG for the PDA given below:				
	$A = (\{q_0, q_1\}, \{0, 1\}, \{A, z\}, d, z, \{q_1\})$				
	where δ is given as:				
	$\delta(q, 0, z) = (q_0, Az)$				
	$\delta (q_0, I, A) = (q_0, AA)$				
	$\delta(q_0,0,A) = (q, \epsilon)$				
20.	State and prove closure properties of the recursively enumerable language.				
21.	Design Turing Machine for the language $\{L = a^n b^n / n > = 1\}$				
22					
22.	Construct Turing Machine for the language $\{L = a^m b^m c^m m \ge 1\}$				
23	Construct PDA equivalent to following grammar:				
20.	$S \rightarrow aAA$				
	$A \rightarrow aS/bS/a$				
24	Check whether the given grammar is ambiguous or not				
27.	S $\rightarrow iC + S$				
	$\begin{bmatrix} \mathbf{J} & \mathbf{J} & \mathbf{U} \\ \mathbf{J} & \mathbf{J} & \mathbf{U} \end{bmatrix} = \begin{bmatrix} \mathbf{J} & \mathbf{J} \\ \mathbf{J} & \mathbf{J} \end{bmatrix}$				
	$S \neq iC + SCS$				
	$S \neq u$				
25	$S \neq b$				
25.	Construct an DFA accepting the set of all strings over the alphabets $\{0, 1\}$, such that				
	number of 0's divisible by 5 and number of 1's divisible by 5.				
26.	Construct a PDA that accepts the language				
	$\{ww^{R} w \text{ in } (0,1)^{*} \text{ and } w^{R} \text{ is for the reverse of the } w.$				
27.	Write Short note on the following:				
	1) Hamilton circuit				
	2) Travelling salesman problem				
	3) Partitioning problem				
	4) Untractable problem				