Department of ELECTRONICS \& COMMUNICATION ENGG. Numerical Question Bank DIGITAL COMMUNIUCATION (EC-503) Semester: $5^{\text {TH }}$ INTRUCTIONS. 1. All questions with their solution are submitted till 27 October 2014.

Question-1 Find the mutual information and channel capacity of the channel shown in figure below. Given $P(X 1)=0.6$ and $P(X 2)=0.4$.

Question-2 A random variable has an exponential PDF given by $f(x)=a e^{\wedge}(-b|x|)$ where a and b are constant find (a) the relation between a and b. (b) the distribution function of x.

Question3- Apply Shannon Fano Coding Procedure to find coding efficiency for the following message ensemble. [Take $M=2$]
$[X]=[x 1, x 2, x 3, x 4, x 5, x 6, x 7]$
$[P]=[0.4,0.2,0.12,0.08,0.08,0.08$, and 0.4$]$

Question-4 an urn contains 4 white and 3 black balls. Two balls are drawn successively with Denoting the number of black balls:
(a) Find the probability function of X.
(b) Draw the chart and histogram

Question-4 A fair die is tossed 5 times. A toss is called a success if face 1 or 6 appears, find:

1) The probability of 2 successes.
2) The mean and standard deviation for the number of successes.

Question-5 An signal is expressed by the equation $x(t)=3 \cos (50 \pi t)+10 \sin (300 \pi t)-\cos (100$ $\pi t)$. Calculate the nyquist rate for this signal.

Question-6 Find the nyquist rate and nyquist interval for the signal $x(t)=1 / 2 \pi \cos (4000 \pi t)$ $\cos (1000 \pi t)$.

Question-7 A quaternary source generates information with probabilities $\mathrm{P} 1=0.2, \mathrm{P} 2=0.3$, and $P 4=0.4$. Find the entropy of the system. What percentage of maximum possible information is being generation by this source?

Question- 8 An event has six possible outcomes with the probabilities $P 1=1 / 2, p 2=1 / 4, p 3=$ $1 / 8, P 4=1 / 16, P 5=1 / 32, P 6=1 / 32$. Find the entropy of the system. Also the rate of information if there are 16 outcomes per second.

Question-9 A continuous signal is band limited to 5 Khz . The signal is quantized in 8 levels of a PCM system with the probabilities $0.25,0.2,0.2,0.1,0.1,0.05,0.05$ and 0.05 . calculate the entropy and the rate of information.

Question-10 Two source are generating as given below.
Source-1 P1 $=1 / 4, P 2=1 / 4, P 3=1 / 4, P 4=1 / 4$
Source-2 P1 $=1 / 2, P 2=1 / 4, P 3=1 / 8, P 4=1 / 8$
The message rates are respectively 200 and 250 message per second. Compare H and R of sources.

Question-11 an urn contains 3 white and 4 black balls. Two balls are drawn successively with Denoting the number of white ball: Find the probability function of X.

Question-12 24 telephone channels, each band limited to 3.4 KHz , are to be time division multiplexed by using PCM. Calculate the bandwidth of PCM System for 128 quantization levels and an 8 KHz sampling frequency.

Question-13 A Container contains 3 white and 4 black balls. Two balls are drawn successively with Denoting the number of white ball: Find the discrete function for random variable X .

Question-14 Find the constant C so that the function

$$
f(x)=\left\{\begin{array}{cc}
C(x-1), & 1<x<4 \\
0 & \text { otherwise }
\end{array}\right\}
$$

Question-15 For the PDF $\mathrm{f}(\mathrm{x})=$ Find $\left\{\begin{array}{cc}\left(\frac{b}{a}\right) x+b, & x<0 \\ \left(-\frac{b}{a}\right)+b & x>0\end{array}\right\}$
(a) The relationship between a and b
(b) $P(X>a / 2)$

Question-16 Apply Shannon Fano Coding Procedure to find coding efficiency for the following message ensemble. [Take $M=2$]
$[X]=[x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8]$
$[P]=[1 / 4,1 / 8,1 / 16,1 / 16,1 / 16,1 / 4,1 / 16,1 / 8]$

Question17-Apply Haffman Coding Procedure to find coding efficiency for the following message ensemble. [Take $\mathrm{M}=2$]
$[X]=[x 1, x 2, x 3, x 4, x 5, x 6, x 7]$
$[P]=[0.4,0.2,0.12,0.08,0.08,0.08$, and 0.4$]$
Question18- The generate polynomial of a $(7,4)$ cycle code is $g(x)=1+x+x^{\wedge} 3$. Find the 16 code words of this code.

Question-19 8 channels, each band limited to 2.5 KHz , are to be time division multiplexed by using PCM. Calculate the bandwidth of PCM System for 64 quantization levels and an 4 KHz sampling frequency.

Question-20 Show the relation between Mean, Variance and Standard Deviation.

