ASSIGNMENT-1
 BRANCH: EC
 SEM: 4TH
 LAST DATE OF SUBMISSION: 20/02/2015

IES COLLEGE OF TECHNOLOGY, BHOPAL
B.E. (4th SEM) ASSIGNMENT-1

ENGINEERING MATHEMATICS (BE -401)
DATE OF ASSIGN: 02/02/2015
DATE OF SUBMISSION: 19/02/2015

Q. 1	a) Define Limit. (b) What is Analytic function? (c) If $\mathrm{f}(\mathrm{z})$ be regular function of z,prove that $=\int_{0}^{2 \pi} \frac{d \theta}{a+b \sin \theta}=\frac{2 \pi}{\sqrt{\left(a^{2}-b^{2}\right)}}$ where $\mathrm{a}>b>0$	
Q. 2	a) Define Harmonic function. b) Determine whether $\left.\frac{\partial^{2}}{z}+\frac{\partial^{2}}{\partial y^{2}}\right\}\|f(z)\|^{2}=4\|f(z)\|^{2}$ or (c) show that $\int_{0}^{2 \pi} \frac{d \theta}{a+b \cos \theta}$ poles and order opoles and residues	
Q. 3	Define contour integrations. (c).Find	
Q. 4	Prove that Cauchy Riemann equation and define residues formula.	

IES COLLEGE OF TECHNOLOGY, BHOPAL

B.E. (4th SEM) ASSIGNMENT-1

EMT (EC -402)
DATE OF ASSIGN: 02/02/2015
DATE OF SUBMISSION: 19/02/2015

| a. State and explain divergence theorem and gives its physical significance. |
| :--- | :--- | :--- |
| b. State and drive Stokes theorem |
| c. Prove that: $E=-\nabla \varnothing$ |
| d. Prove that: $\nabla \times \nabla \varnothing=0$ |
| e. Derive an equation for electric field from an infinite line charge |
| f. Derive an equation for electric field intensity due to circular disc whose |
| radius is 'R'unit and total charge is Q | . | g. Show that at a boundary between two dielectrics the tangential component |
| :--- |
| E and normal component of D must be continuous. |
| h. The region $y<0$ contain a dielectric material for which $\epsilon_{r 1}=2.5$ while |
| the region $y>0$ is characterized by $\epsilon_{r 2}=4$. Let $E_{1}=-30 a_{x}+50 a_{y}+$ |
| $70 a_{z} V / m$. Find (I) $E_{N 1}$ (II) $E_{t 1}$ (III) θ_{1} (iv) E_{2}. |

IES COLLEGE OF TECHNOLOGY, BHOPAL
B.E. ($4^{\text {th }}$ SEM) DIGITAL ELETRONICS

Assignment-1 (EC-403)
DATE OF ASSIGN: 02/02/2015
DATE OF SUBMISSION: 19/02/2015

Ques-1	What all the number system essential for digital application?	50 words
Ques-2	Define K- map	50 words
Ques-3	Proof the De- Morgan's theorem.	100 words
Ques-4	Simplify the Boolean function by using K- Map method f(A,B,C,D) $=$ \sum m(0,1,3,7,8,10)	Numerical
Ques-5	Simplify the Boolean function by using K- Map method f(A,B,C,D) $=$ $\sum \mathrm{m}(0,5,7,13,14,15)$	Numerical
Ques-6	Explain Boolean operations	100 words
Ques-7	Write the types of Gate	100 words
Ques-8	Simplify the Boolean function by using K- Map method f(A,B,C,D) $=$ $\sum \mathrm{m}(0,2,4,7,8,12)+\mathrm{d}(5,11,9)$	Numerical
Ques-9	Write the difference between K-map and Quine Mc Cluskey method	50 words
Ques-10	Convert the followings: a) $(111001.11) 2=(?) 10$	b) $($ A6C $) 16=(?) 2$

IES COLLEGE OF TECHNOLOGY, BHOPAL

B.E. ($4^{\text {th }}$ SEM) ELETRONICS CIRCUIT

Assignment-1 (EC-403)
DATE OF ASSIGN: 02/02/2015
DATE OF SUBMISSION: 19/02/2015

SEE BELOW IN IMAGE FORMAT

IES GROUP OF TECHNOLOGY

ASSIGNMENT - 1

SUBJECT NAME: ELECTRONIC CIRCUITS
SUBJECT CODE: EC-404
DATE OF AWARD: / 15
DATE OF SUBMISSION: 15

1. a) Write short notes on AC and DC load lines.
b) Write short notes on biasing of transistors.
c) Find the Q - point values for the voltage divider bias circuit. And also draw a load line and locate Q-point.

2. a) What are the advantages of negative feedback? Explain.
b) State and briefly explain Barkhausen criteria of oscillation
c) Explain why CE amplifier requires a form of DC stabilization, whereas CB amplifiers are usually not stabilized.
3. Draw a circuit diagram; explain the working of a transistor amplifier in which phase inversion of input signal does not take place..
4. For a single transistor amplifier, find the $A_{v}, Z_{i n}$ and $v_{c e}$.take $\beta=100, r_{e}{ }^{\prime}=20 \mathrm{mv} / \mathrm{I}$

5. In a CE amplifier, determine the values of (a) Input resistance of the stage. (b) Input resistance directly looking into the base (c) voltage gain in $d B$

IES COLLEGE OF TECHNOLOGY, BHOPAL

B.E. ($4^{\text {th }}$ SEM) Assignment -1

Analog Communication (EC-405)
DATE OF ASSIGN: 02/02/2015
DATE OF SUBMISSION: 19/02/2015

Q. 1	What do you mean by Signals and Type of Signals.	2
Q. 2	What is the need of Frequency domain analysis and Time domain analysis?	3
Q. 3	State and Prove the properties of Fourier transform.	3
Q. 4	Explain Linear Time Invariant and type of system.	7
Q. 5	What do you mean by Convolution? Derive the properties of Convolution.	7

