ASSIGNMENT-1 BRANCH: EC SEM: 4TH LAST DATE OF SUBMISSION: 20/02/2015

IES COLLEGE OF TECHNOLOGY, BHOPAL

B.E. (4th SEM) ASSIGNMENT-1

ENGINEERING MATHEMATICS (BE -401)

DATE OF ASSIGN: 02/02/2015

DATE OF SUBMISSION: 19/02/2015

Q.1	a) Define Limit. (b) What is Analytic function? (c) If f(z) be regular function of	
	z, prove that $\left\{\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right\} f(z) ^2 = 4 f(z) ^2 \text{ or (c) show that } \int_0^{2\pi} \frac{d\theta}{a+b\cos\theta}$	
	$=\int_{0}^{2\pi} \frac{d\theta}{a+b \sin\theta} = \frac{2\pi}{\sqrt{a^2-b^2}} \text{ where } a > b > 0$	
Q.2	a) Define Harmonic function. b) Determine whether $\frac{1}{7}$ is analytic or not. (c). Find	
	poles and order opoles and residues	
Q.3	Define contour integrations.	
Q.4	Prove that Cauchy Riemann equation and define residues formula.	

IES COLLEGE OF TECHNOLOGY, BHOPAL

B.E. (4th SEM) ASSIGNMENT-1

EMT (EC -402)

DATE OF ASSIGN: 02/02/2015

DATE OF SUBMISSION: 19/02/2015

- a. State and explain divergence theorem and gives its physical significance.
- b. State and drive Stokes theorem
- c. Prove that: $E = -\nabla \phi$

i.

- d. Prove that: $\nabla \times \nabla \emptyset = 0$
- e. Derive an equation for electric field from an infinite line charge
- f. Derive an equation for electric field intensity due to circular disc whose radius is 'R'unit and total charge is Q
- g. Show that at a boundary between two dielectrics the tangential component E and normal component of D must be continuous.

h. The region y < 0 contain a dielectric material for which $\epsilon_{r1} = 2.5$ while the region y > 0 is characterized by $\epsilon_{r2} = 4$. Let $E_1 = -30a_x + 50a_y + 70a_z V/m$. Find (I) E_{N1} (II) E_{t1} (III) θ_1 (iv) E_2 .

IES COLLEGE OF TECHNOLOGY, BHOPAL B.E. (4th SEM) DIGITAL ELETRONICS

Assignment-1 (EC-403)

DATE OF ASSIGN: 02/02/2015

DATE OF SUBMISSION: 19/02/2015

Ques-1	What all the number system essential for digital application?	50 words
Ques-2	Define K- map	50 words
Ques-3	Proof the De- Morgan's theorem.	100 words
Ques-4	Simplify the Boolean function by using K- Map method f(A,B,C,D)=	Numerical
	$\sum m(0,1,3,7,8,10)$	
Ques-5	Simplify the Boolean function by using K- Map method f(A,B,C,D)=	Numerical
	$\sum m(0,5,7,13,14,15)$	
Ques-6	Explain Boolean operations	100 words
Ques-7	Write the types of Gate	100 words
Ques-8	Simplify the Boolean function by using K- Map method f(A,B,C,D)=	Numerical
	$\sum m(0,2,4,7,8,12) + d(5,11,9)$	
Ques-9	Write the difference between K-map and Quine Mc Cluskey method	50 words
Ques-10	Convert the followings:	Numerical
	a) $(111001.11)2 = (?)10$ b) $(A6C) 16 = (?)2$	

IES COLLEGE OF TECHNOLOGY, BHOPAL B.E. (4th SEM) ELETRONICS CIRCUIT

Assignment-1 (EC-403)

DATE OF ASSIGN: 02/02/2015

DATE OF SUBMISSION: 19/02/2015

SEE BELOW IN IMAGE FORMAT

IES GROUP OF TECHNOLOGY

ASSIGNMENT -1

SUBJECT NAME: ELECTRONIC CIRCUITS SUBJECT CODE: EC-404

DATE OF AWARD: / /15 DATE OF SUBMISSION: / /15

IES COLLEGE OF TECHNOLOGY, BHOPAL B.E. (4th SEM) Assignment -1 Analog Communication (EC-405)

DATE OF ASSIGN: 02/02/2015

DATE OF SUBMISSION: 19/02/2015

Q.1	What do you mean by Signals and Type of Signals.	2
Q.2	What is the need of Frequency domain analysis and Time domain analysis?	3
Q.3	State and Prove the properties of Fourier transform.	3
Q.4	Explain Linear Time Invariant and type of system.	7
Q.5	What do you mean by Convolution? Derive the properties of Convolution.	7