BRANCH-THERMAL ENGG.

IES COLLEGE OF TECHNOLOGY, BHOPAL

M.E./ M.Tech.(1th SEM) Assignment -1

Advanced Mathematics (MPTP-101) 10/15 Date of Submission:26/10/2015

Date of Assignment: 10/10/15

Note: 1.Question should be written in plain A-4 Size Paper.

2. Minimum 300 Word Limit for each Question.

3. Assignment will submit in stick file.

1	Define vector space and show that the set of all matrics of order 2×2 is vector space	4
	with respect to matrix addition and scalar multiplication.	
2	Show that mapping $f:v_3(r) \rightarrow v_2(R)$ defined by $f(a,b,c) = (a,b)$ is linear transformation.	4
	What is kernel of this transformation?	
3	Solve the poison's equation $\frac{d^2y}{dx^2} \frac{d^2y}{dy^2} = -10(x^2 + y^2 + 10)$ over sides x=y=0, x=y=3	4
	with $4(x,y)=0$ on the boundary and mesh length L=1.	
4	Find the solution of the one dimensional heat equation by variable separable method.	4

IES COLLEGE OF TECHNOLOGY, BHOPAL M.E./ M.Tech.(1th SEM) Assignment -1

Thermodynamics and Combustion (MPTP-102)

Not	Date of Assignment: 10/10/ e: Minimum 300 Word Limit for e		Date of Submission: 26/10/2015	
1	Define first and second law of thermodynamics?(june-2013)			
2	Explain with simple sketch, thermodynamics system ,closed, open, adiabatic, isolated?			
	(june-2013)			
3	3 2kg of air at 6.86bar at absolute and 90 ^o C pass through a reversible non flow polyt			
	process represented by PV ^{1.1} =Constant. Till the pressure falls to 1.37bar.			
	Calculate:			
	a)The final temperature spe	cific volume and change	in entropy?	
	b) work and heat transfer?	(dec-2014)		
4	Define phase and reaction e	equilibrium?(dec-2013)		

IES COLLEGE OF TECHNOLOGY, BHOPAL

M.E./ M.Tech.(1th SEM) Assignment -1

Heat and Mass Transfer (MPTP-103) D/10/15 Date of Submission: 26/10/2015

Date of Assignment: 10/10/15 Note: Minimum 300 Word Limit for each Question

Defines modes of heat transfer.also descibe the mechanism of heat transfer in 4 1 detail. (dec-2009,11) 2 4 Define the governing equation in luminar and turbulent flow. (dec-2009,10) 3 4 Define the free and foxed convention. (dec-2010,12) 4 4 What is the steady state conduction.(dec-2013,14) 5 What is nature of vaporization? (dec-2014) 4

IES COLLEGE OF TECHNOLOGY, BHOPAL M.E./ M.Tech.(1th SEM) Assignment -1

Advanced thick Mechanics (MPTP-104) 10/10/15 Date of Submission: 26/10/2015

Date of Assignment: 10/10/15 Note: Minimum 300 Word Limit for each Question

1	State and prove the Pascal's law. (June-2010)	
2	Define Newton's law of viscosity. Explain the importance of viscosity in fluid motion.(Dec-2011)	
3	Derive Reynolds's transport theorem and write its applications.(June 2011)	4
4	Differentiate between (June 2012)	4
	a. Steady and unsteady flow.	
	b. Uniform and non-uniform flow.	
5	What is the flow net? Enumerate the method of drawing flow net. (Dec-2013)	4

IES COLLEGE OF TECHNOLOGY, BHOPAL M.E./ M.Tech.(1th SEM) Assignment -1

IC Engine alternate flow (MPTP-105)

Mini	Date of Assignment: 10/10/15 Date of Submission: 26/10/2015 N mum 300 Word Limit for each Question	Note:	
1.			
2.	Explain the difference between the continuous injection and pulsed injection?(DEC - 2012)	4	
3.	What is the generalized performance map of IC engine.(DEC-2013)	4	
4.	What is duel fuel Engine? (JUNE-2014)	4	
5.	A four cylinder four stroke SI engine has a compression ratio of θ and bore of 100 mm.	4	
	with the stroke equal to 75%. The engine operate at a speed of 4000 rpm with an air fuel		
	ratio is 15.		
	Given that		
	Cabrific value of fuel=42MJ/kg		
	Atmosphere density=1.12kg/m ³		
	Mep in cylinder=10 bar, η _{melh} =80%.		
	Determine the indicated thermal η and brake power. JUNE-2014		