IES COLLEGE OF TECHNOLOGY, BHOPAL M.E./ M.Tech.(1th SEM) Assignment -1 (Unit 1&2) Advanced Mathematics (MEDC-101)

Da	ate of Assignment:18/09/201	4		Date	of Submission:17/10/2014	,
No	ote: 1.Question should be writ	ten in plain	A-4 Size Pa	iper.		
	2. Minimum 300 Word Li 3. Assignment will submit	mit for each in stick file	Question.			
Q.1	Using method of separat	tion of var	riables, sc	olve:		Mar., 2010
		ди	ди			
		$\frac{\partial x}{\partial x}$	$r = 2 \frac{1}{\partial x}$	$\vdash u$		
	where, $u(x, 0) = 6e^{-3x}$	0,2	07			
Q.2	Define binomial distrib	ution. Th	e probab	ility the	pen manufactured by	aMar. ,2010
	company will be defecti	ve is $\frac{1}{2}$	If 12 suc	, h nens ar	re manufactured find th	1e
	mahahility that	10 10	11 12 540	n pens u	e munuruetureu, mia u	
	probability that	a defectiv				
	a. Exactly two will b	e defectiv				
	0. At least two will be		ve			
0.3	C. None will be deled	dimensio	and head a	anation		Juna 2011
Q.3	Find the solution of two-	aimensio	nai neat e	equation.		June, 2011
04	Solve the elliptic equation u	+ 11 =	0 for the fo	ollowing se	ware mesh with boundary	Dec 2010
2.1	values as shown.	$a_{x} + a_{yy} =$	o for the K	Jilowing se	quare mesn with boundary	Dec., 2010
	1	000	1000	1000	_ 1000	
	2000	u ₁	u ₂		500	
	2000	u ₃	U4		- 0	
	1000					
			500	0	0	
Q.5	Find the Fourier transform of	f :				Mar., 2010
		f(x)	_ {1 for :	x < 1		
		$\int (x) \cdot$	[–] \0 for :	x > 1		
	Hence evaluate:		6 ⁹⁰ 			
			$\int \frac{\sin x}{x} dx$	с		
			$J_0 x$			
L						

IES COLLEGE OF TECHNOLOGY, BHOPAL

M.E./ M.Tech (1st SEM) Assignment -1(Unit 1 & 2)

Micro Controller System Design (MEDC-102)

Date of Assignment: 18/09/2014

Date of Submission:17/10/2014

Note: Minimum 300 Word Limit for each Question.

	Explain the single chip microcomputer architecture? (R.G.P.V. June 2014)	
Q.1		
	Explain hardware architecture of 8051 microcontroller. (R.G.P.V. June 2014)	
Q.2		
	Discuss in brief about the supporting chip used with 16-bit microprocessor. (R.G.P.V. June 2013)	
Q.3		
	Discuss about the addressing modes of microcontroller 8051.(R.G.P.V. June 2013)	
Q.4		
	Describe interfacing techniques in detail. (R.G.P.V. Dec.2010)	
Q.5		

IES COLLEGE OF TECHNOLOGY, BHOPAL

M.E./ M.Tech (1st SEM) Assignment -1(Unit 1& 2)

DSP Application (MEDC-103)

Date of Submission:17/10/2014 Date of Assignment: 18/09/2014 Note: Minimum 300 Word Limit for each Question. Determine impulse response h(n) for the system described by second order difference equation Q.1 (R.G.P.V. Dec 2012) y(n)-3y(n-1)+4y(n-2)=x(n)+2(x(n-1))Prove the convolution property of Z-Transform. (R.G.P.V. Dec 2010) Q.2 Differentiate between a recursive and non recursive system (R.G.P.V. Dec 2010) Q.3 Determine the Z-transform of the following graph Q.4 $X(n) = -n a^{n} u(-n-1)$ (R.G.P.V. June 2014) Write a short note on-Q.5 (1) Filtering of long data sequence (2) Relationship between DCT and DFT (R.G.P.V. Dec.2014)

	IES COLLEGE OF TECHNOLOGY, BHOPAL
	M.E./ M.Tech. (1 st SEM) Assignment 1(Unit 1&2)
Da No	VLSI Design (MEDC-104) te of Assignment:18/09/2014 Date of Submission:17/10/2014 e: Minimum 300 Word Limit for each Question
<u>).1</u>	What do you mean by integrated circuits? Explain its basic concepts. Write all is manufacturing teps and elaborate any one with the help of suitable example (R.G.P.V. June 2014)
Q.2	What are the various process of fabrication of CMOS? Explain any one of them with neat diagram R.G.P.V. Dec 2010)
2.3	What are the consequences of power and delay in basic physical design of any CMOS circuit? R.G.P.V. June 2014)
2.4	Explain the following: Oxidation I. Ion implantation in brief (R.G.P.V. Dec 010)
2.5	What do you mean by simulation? Which software proves to be suitable for the simulation in VLS esign ? (R.G.P.V. Dec.2011)

IES COLLEGE OF TECHNOLOGY, BHOPAL M.E./ M.Tech (1st SEM) Assignment -1(Unit 1 & 2) Data Communication AND Computer Network (MEDC-105)

D	Date of Date of Assignment: 18/09/2014 Date of Submission:17/10/2014
N	ote: Minimum 300 Word Limit for each Question
	Explain the transmission using packet switching techniques. (R.G.P.V. June 2014)
Q.1	
	Explain vertical and longitudinal redundancy check (R.G.P.V. Dec 2010)
Q.2	
	Explain the X.21 standards used in data communication. (R.G.P.V. June 2014)
Q.3	
	What is the advantage of sliding window flow protocol compared to stop and wait flow control
Q.4	(R.G.P.V. June 2013)
	Discuss the flow in point to point and multipoint links(R.G.P.V. Dec.2014)
Q.5	