BRANCH-THERMAL ENGG.

IES COLLEGE OF TECHNOLOGY, BHOPAL

M.E./ M.Tech.(1th SEM) Assignment -1

Advanced Mathematics (MPTP-101)

Date of Assignment: 18/09/14 Date of Submission:17/10/2014

Note: 1.Question should be written in plain A-4 Size Paper.

- 2. Minimum 300 Word Limit for each Question.
- 3. Assignment will submit in stick file.

1	Define vector space and show that the set of all matrics of order 2x2 is vector space			
	with respect to matrix addition and scalar multiplication.			
2	Show that mapping $f:v_3(r)->v_2(R)$ defined by $f(a,b,c)=(a,b)$ is linear transformation.	4		
	What is kernel of this transformation?			
3	Solve the poison's equation $\frac{d^2y}{dx^2} \frac{d^2y}{dy^2} = -10(x^2 + y^2 + 10)$ over sides x=y=0, x=y=3	4		
	with 4(x,y)=0 on the boundary and mesh length L=1.			
4	Find the solution of the one dimensional heat equation by variable separable method.	4		

IES COLLEGE OF TECHNOLOGY, BHOPAL M.E./ M.Tech.(1th SEM) Assignment -1

Thermodynamics and Combustion (MPTP-102)

Date of Assignment: 18/09/14 Date of Submission:17/10/2014

Note: Minimum 300 Word Limit for each Question.

1	Define first and second law of thermodynamics?(june-2013)					
2	Explain with simple sketch, thermodynamics system ,closed, open, adiabatic, isolated?					
	(june-2013)					
3	2kg of air at 6.86bar at absolute and 90°C pass through a reversible non flow polytrophic					
	process represented by PV ^{1.1} =Constant. Till the pressure falls to 1.37bar.					
	Calculate:					
	a)The final temperature specific volume and change in entropy?					
	b) work and heat transfer? (dec-2014)					
4	Define phase and reaction equilibrium?(dec-2013)					

IES COLLEGE OF TECHNOLOGY, BHOPAL M.E./ M.Tech.(1th SEM) Assignment -1

Heat and Mass Transfer (MPTP-103)

Date of Submission:17/10/2014 Date of Assignment: 18/09/14

Note: Minimum 300 Word Limit for each Question

1	Defines modes of heat transfer.also descibe the mechanism of heat transfer in	4
	detail. (dec-2009,11)	
2	Define the governing equation in luminar and turbulent flow. (dec-2009,10)	4
3	Define the free and foxed convention. (dec-2010,12)	4
4	What is the steady state conduction.(dec-2013,14)	4
5	What is nature of vaporization? (dec-2014)	4

IES COLLEGE OF TECHNOLOGY, BHOPAL M.E./ M.Tech.(1th SEM) Assignment -1

Advanced thick Mechanics (MPTP-104)

Date of Assignment: 18/09/14 Date of Submission:17/10/2014

Note: Minimum 300 Word Limit for each Question

1	State and prove the Pascal's law. (June-2010)	4	
2	Define Newton's law of viscosity. Explain the importance of viscosity in fluid		
	motion.(Dec-2011)		
3	Derive Reynolds's transport theorem and write its applications.(June 2011)	4	
4	Differentiate between (June 2012)	4	
	a. Steady and unsteady flow.		
	b. Uniform and non-uniform flow.		
5	What is the flow net? Enumerate the method of drawing flow net. (Dec-2013)	4	

IES COLLEGE OF TECHNOLOGY, BHOPAL M.E./ M.Tech.(1th SEM) Assignment -1

IC Engine alternate flow (MPTP-105)

Date of Assignment: 18/09/14 Date of Submission:17/10/2014

Note: Minimum 300 Word Limit for each Question

1.	What is the significance of the ASTM distillation curve?(JUNE-2013)	4
2.	Explain the difference between the continuous injection and pulsed injection?(DEC -	4
	2012)	
3.	What is the generalized performance map of IC engine.(DEC-2013)	4
4.	What is duel fuel Engine? (JUNE-2014)	4
5.	A four cylinder four stroke SI engine has a compression ratio of θ and bore of 100 mm.	4
	with the stroke equal to 75%. The engine operate at a speed of 4000 rpm with an air fuel	
	ratio is 15.	
	Given that	
	Cabrific value of fuel=42MJ/kg	
	Atmosphere density=1.12kg/m ³	
	Mep in cylinder=10 bar, η _{melh} =80%.	
	Determine the indicated thermal η and brake power. JUNE-2014	