IES COLLEGE OF TECHNOLOGY, BHOPAL M.E./ M.Tech.(1th SEM) Assignment -1 Advanced Mathematics (MEPS-101)

Units Cover-(I-II)

Date of Assignment: 18/09/2014

Date of Submission:17/10/2014

Q.1	Using method of separat	tion of var	riables, so	olve:		Mar., 2010	
-	$\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial x} + u$						
		$\frac{\partial r}{\partial r}$	$r = 2 \frac{\partial x}{\partial r}$	+ u			
	where, $u(x, 0) = 6e^{-3x}$	Ολ	Ολ				
Q.2		ution Th	e nrohah	ility th	e pen manufactured by	aMar. 2010	
2			-	-			
	company will be defective is $\frac{1}{10}$. If 12 such pens are manufactured, find the						
	probability that						
	a. Exactly two will be defective						
	b. At least two will be defective						
	c. None will be defec	ctive.					
Q.3	Find the solution of two-		nal heat e	quation	n.	June, 2011	
				1			
Q.4	Solve the elliptic equation u_{r}	$u_{u_{1}} + u_{u_{2}} =$	0 for the fo	ollowing	square mesh with boundary	Dec., 2010	
	Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown:						
	1	000	1000	1000	1000		
	2000	u ₁	u ₂		500		
	2000	u ₃	u ₄		0		
					0		
	1000		500	0			
			500	0	0		
Q.5	Find the Fourier transform o					Mar., 2010	
	$f(x) = \begin{cases} 1 \ for \ x < 1 \\ 0 \ for \ x > 1 \end{cases}$						
	Hence evaluate:		$\int_{0}^{\infty} \sin x$				
	$\int_0^\infty \frac{\sin x}{x} dx$						
			$\gamma_0 \chi$				

IES COLLEGE OF TECHNOLOGY, BHOPAL M.E. / M.Tech.(1th SEM) Assignment -1 Power System Dynamics Analysis (MEPS-102) Units Cover-(I-II)

Date of Assignment: 18/09/2014

Date of Submission:17/10/2014

Q.1	Discuss the relation between voltage stability to rotor angle stability	Dec., 2011
	Min. words (400)	
Q.2	Develop steady state model of synchronous generator.	Dec.,2011
Q.3	Simplify the representation of excitation model	Dec., 2011
Q.4	Define the following: a. Voltage Stability b. Voltage Collapse c. Mid-term and long-term stability Min. words (400) for each	March,2010
Q.5	Drive swing equation.	Dec., 2011

IES COLLEGE OF TECHNOLOGY, BHOPAL M.E. / M.Tech. (1th SEM) Assignment -1

Advanced power Systems Projection Relay (MEPS-103)

Units Cover-(I-II)

Da	te of Assignment:18/09/2014 Date of Submission:17/10/201	[4			
Q.1	Explain clearly the basic principle of operation of a differential relay. Explain its working Dec.				
	for (i) an internal fault (ii) a through fault.				
Q.2	In what ways the static relay has been successful in replacing the conventional	Dec ,2010			
	electromagnetic relay? Min. words (400)				
Q.3	Explain clearly the basic principle of operation of a differential relay and explain how the	Dec., 2011			
	percentage differential relay overcome the drawback of simple differential relay and show				
	that the slope of the simple differential relay characteristics is zero.				
Q.4	What are the comparators? Discuss duality between amplitude and phase comparator.	March.,			
		2010			
Q.5	Discuss different types of amplitude and phase comparators	Mar., 2010			

IES COLLEGE OF TECHNOLOGY, BHOPAL M.E. / M.Tech.(1th SEM) Assignment -1

D	Pate of Assignment: 18/09/2014 Date of Submission: 1'	7/10/2014
Q.1	Discuss the power capability curves of alternator. Explain how reactive power output an alternator is restricted by capability curves?	it ofMar., 2010
Q.2	Developed the algorithm for formation of bus impedance matrix.	Mar.,2010
Q.3	What are the contingencies occurring in power system? Discuss in detail the contingency analysis of power system. Min. words (400)	Mar., 2010
Q.4	Develop a mathematical model of an OLTC.	Dec.,2011
Q.5	Explain power system security. Discuss various levels of security with the help of flowchart.	Dec., 2011

IES COLLEGE OF TECHNOLOGY, BHOPAL M.E./ M.Tech.(1th SEM) Assignment -1 Advanced course in electrical machine (MEPS-105) Units Cover- (I-II)

Da	ate of Assignment: 18/09/2014 Date of Submission: 17/10/20	14
Q.1	Explain the concept of speed and transformer voltage, invariance of power as applied to electrical machines.	Dec., 2011
Q.2	What is Kron's primitive machine? Write down the voltage equation of a Kron's primitive machine in the matrix form quoting the observation made.	Mar. ,2010
Q.3	Starting from primitive machine develop the voltage equations for a 3-phase induction motor and hence derive its equivalent circuit.	Dec., 2011
Q.4	Explain how park's transformations transform equations in a, b,c phase variables to d. q axes variables	March., 2010
Q.5	Develop an expression for torque of a single phase induction motor during its normal running condition using cross field theory.	Dec., 2011