Engineering Mathematics

Q1. (a) Solution.

Let $\mathrm{f}(\mathrm{x})=\log (1+\mathrm{x})$

$$
f(0)=\log 1=0
$$

Then

$$
\begin{gathered}
f^{\prime}(x)=\frac{1}{(1+x)} \quad, \quad f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=(-1)(1+x)^{-2}, f^{\prime \prime}(0)=-1
\end{gathered}
$$

And so on....
$f(x)=f(0)+x f(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f "(0)+$.
$\therefore \log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}$.
Changing x into -x , we have
$\log (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots \ldots \ldots \ldots \ldots$
$\therefore \log \frac{1+x}{1-x}=\log (1+x)-\log (1-x)=2\left[x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}+\cdots \ldots \ldots\right]$

Q1. (b) Solution.

A function $f(x, y)$ is said t be homogeneous of degree (or order) n in the variables x and y if it can be expressed in the form
$x^{n} \emptyset(y / x)$ or $y^{n} \emptyset(x / y)$
Composite functions - (i) if $u=f(x, y)$ where $x=\varnothing(f)$ and $y=x(t)$ then u is called a composite function of (the single variable) t and we can find $\frac{d u}{d t}$.
(ii) if $x=f(x, y)$ where $x=\emptyset(u, v)$ and $y=x(u, v)$ then x is called a composite function of (two variables) u and v so that we can find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ them on Homogeneous function of degree n in x and y, then
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} n u$
$u=x^{n} f(y / x) ; \frac{\partial u}{\partial x}=n x^{n-1} f(y / x)+x^{n} f^{\prime}(y / x)\left(-y / x^{2}\right)$

$$
\begin{equation*}
\Rightarrow x \frac{\partial u}{\partial x}=n x^{n} f(y / x)-x^{n-1} y f^{\prime}(y / x) \tag{1}
\end{equation*}
$$

Also $\frac{\partial u}{\partial y}=x^{n} f^{\prime}(y / x) * \frac{1}{x}=x^{n-1} f^{\prime}(y / x)$

$$
\begin{equation*}
\Rightarrow y \frac{\partial u}{\partial y}=x^{n-1} y f^{\prime}(y / x) . \tag{2}
\end{equation*}
$$

Adding equation (1) and (2) we get

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n x^{n} f(y / x)=n u
$$

Q1.(c) Solution.

Here $\mathrm{f}(\mathrm{x}, \mathrm{y})=x^{3}+y^{3}-3 a x y$

$$
\begin{aligned}
& f_{x}=3 x^{2}-3 a y, f_{y}=3 y^{2}-3 a x, r=f_{x x}=6 x \\
& S=f_{x y}=-3 a, t=f_{y y}=6 y
\end{aligned}
$$

Now
$f_{x}=0$ \& $f_{y}=0$ and solving both we get two stationary points $(0,0)$ and (a a)
Now

$$
\mathrm{rt}-\mathrm{s}^{2}=36 \mathrm{xy}-9 \mathrm{a}^{2} ; \text { At }(0,0), \mathrm{rt}-\mathrm{s}^{2}=-9 a^{2}<0
$$

\Rightarrow There is no extreme value at $(0,0)$
At (a, a), rt-s ${ }^{2}=36 \mathrm{a}^{2}-9 \mathrm{a}^{2}=27 \mathrm{a}^{2}>0$
$\Rightarrow F(x, y)$ has extreme value at (a, a)
Now $r=6 a$; it $a>0, r>0$ so that $f(x, y)$ has a minimum value at (a, a)
Min. value $=a^{3}+a^{3}-3 a^{3}=-a^{3}$
It $\mathrm{a}<0, \mathrm{r}<0$ so that $\mathrm{f}(\mathrm{x}, \mathrm{y})$ has a maximum value at (a,a) ; max. value $=-a^{3}-a^{3}+3 a^{3}=a^{3}$

Q1. (d) Solution.

The circum radius of a triangle $A B C$ is given by
$R=\frac{a}{2 \sin A}=\frac{b}{2 \sin B}=\frac{c}{2 \sin C}$
Now

$$
\mathrm{a}=2 \mathrm{R} \sin A
$$

Differentially are get da $=2 \mathrm{R} \operatorname{Cos} \mathrm{A} \mathrm{d}_{\mathrm{A}}$ or $d_{a} / \cos A=2 \mathrm{Rd}_{\mathrm{A}}$

$$
\frac{d_{b}}{\cos B}=2 R d_{B} \quad \& \quad \frac{d_{c}}{\cos C}=2 R d_{c}
$$

Adding all three we get $\frac{d_{a}}{\cos A}+\frac{d_{b}}{\cos B}+\frac{d_{c}}{\cos C}=2 R\left(d_{A}+d_{B}+d_{C}\right.$

$$
=0 \quad(\mathrm{~A}+\mathrm{B}+\mathrm{C}=\pi,
$$

Q1 (e) Solution:

Equation of the curve is $Y=c \cosh (x / c)$
Diff. (1) w. r.to $\mathrm{x}, \mathrm{y} 1=\mathrm{c} \sinh (x / c) * \frac{1}{c} \Rightarrow \mathrm{y}_{1}=\sinh (x / c)$
Again diff. w. r. to x , we get $\mathrm{y}_{2}=\frac{1}{c} \cosh \frac{x}{c}$
$\therefore \mathrm{Q}=\frac{\left(1+\mathrm{y}_{1}^{2}\right)^{3 / 2}}{\mathrm{y}_{2}}=\frac{\left(1+\sinh ^{2 x} / c\right)^{3 / 2}}{\frac{1}{c} \cosh \frac{x}{c}}=\frac{\left(\cosh ^{2}\right)^{3 / 2}}{\frac{1}{c} \cosh \frac{x}{c}}$

$$
\begin{equation*}
=c \cosh ^{2} x / c \tag{2}
\end{equation*}
$$

Now portion of the normal intercepted between the curve and the x -axis

$$
\begin{align*}
& =\text { Length of Norma }=Y \sqrt{1+y_{1}{ }^{2}} \\
& =c \cosh \frac{x}{c} \sqrt{1+\sinh ^{2} x / c}=c \cosh x / c \cosh x / c=c \cosh ^{2} x / c \ldots \tag{3}
\end{align*}
$$

From (2) \& (3), we have $\mathrm{Q}=$ Length of normal
Again $\frac{\varrho}{(\text { ordinate })^{2}}=\frac{\varrho}{y^{2}}=\frac{c \cosh ^{2}(x / c)}{c^{2}\left(\cosh ^{2}(x / c)\right.}=\frac{1}{c}$
$\therefore \varrho$ varies as y^{2}, i.e., as square of the ordinate

Q2 (a) Solution

Gamma function if n is true, then
$\int_{0}^{\infty} e^{-x} x^{n-1} d x$, which is a function o x is called the Gamma function and it denoted by Γ.
Beta function - If m, n is positive, then the definite integral $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$, which is a function of m and n , is called the Beta function and is denoted by $\beta(\mathrm{m}, \mathrm{n})$.

$$
\beta(\mathrm{m}, \mathrm{n})=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x, \mathrm{~m}>0, \mathrm{n}>0
$$

Symmetry of Beta function
$B(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1}, \quad m>0, n>0$
Now since

$$
\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x
$$

$\mathrm{B}(\mathrm{m}, \mathrm{n})=\int_{0}^{1}(1-x)^{m-1}[1-(1-x)]^{n-1} d x=\int_{0}^{1} x^{n-1}(1-x)^{m-1} d x=\beta(n, m)$

Q2 (b) Solution

Given limit shows that the region of integration is bounded by the curves

$Y=e^{x}, Y=e$
$X=0, \mathrm{X}=1$
Hence $\int_{0}^{1} \int_{e^{x}}^{e} \frac{d y d x}{\log y}=\int_{1}^{e} \int_{0}^{\log y} \frac{d x d y}{\log y}$

$$
=\int_{1}^{e}\left(\frac{x}{\log y}\right)_{0}^{\log y} d y
$$

Q2 (c) Solution

$$
\int_{a}^{b} \sin x d y=\lim _{h \rightarrow \infty} h[\sin a+\sin (a+h)+\sin (a+2 h)+\ldots \ldots \ldots \ldots+\sin l a+\overline{n-1} h
$$

$$
\begin{aligned}
& \text { Where } \mathrm{nh}=\mathrm{b}-\mathrm{a} \\
= & \lim _{h \rightarrow \infty} 2\left\{\frac{\frac{1}{2} h}{\sin \frac{1}{2} h}\right\} \cdot \sin \left(\frac{b-a}{2}\right) \cdot \sin \left\{a+\left(\frac{b-a-h}{2}\right)\right\} \\
= & \cos a-\cos b
\end{aligned}
$$

Q2 (d) Solution

Required volume
$=2 \int_{-2}^{2} \int_{0}^{\sqrt{4-Y^{2}}} Z d x d y$
$=2 \int_{-2}^{2} \int_{0}^{\sqrt{4-Y^{2}}}(4-Y) d x d y$
$=2 \int_{-2}^{2}(4-Y)[x]^{\sqrt{4-Y^{2}}} d y$
$=2 \int_{-2}^{2}(4-Y) \sqrt{4-Y^{2} d y}==2 \int_{-2}^{2} 4 \sqrt{4-Y^{2} d y}-2 \int_{-2}^{2} Y \sqrt{4-Y^{2} d y}$
$=8 \int_{-2}^{2} \sqrt{4-Y^{2} d y}=16 \pi$

Q2 (e) Solution

Let $P=\lim _{h \rightarrow \infty}\left[\left(1+\frac{1}{n^{2}}\right)\left(1+\frac{2^{2}}{n^{2}}\right) \ldots \ldots \ldots\left(1+\frac{n^{2}}{n^{2}}\right)^{1 / 4}\right.$
Taking log on both sides are getting

$$
\begin{aligned}
\log p & =\lim _{\mathrm{h} \rightarrow \infty} \frac{1}{4}\left[\log \left(1+\frac{1^{2}}{\mathrm{n}^{2}}\right)+\log \left(1+\frac{2^{2}}{\mathrm{n}^{2}}\right)+\cdots \ldots \ldots . . \log \left(1+\frac{\mathrm{n}^{2}}{\mathrm{n}^{2}}\right)\right] \\
& =\lim _{h \rightarrow \infty} \frac{1}{4} \sum_{r=0}^{n} \log \left(1+\frac{r^{2}}{n^{2}}\right)=\int_{0}^{1} 1 \cdot \log \left(1+n^{2}\right) d x \\
\therefore & \log p-\log 2=\frac{\pi-4}{2} \\
& \Rightarrow \log \frac{p}{2}=\frac{\pi-4}{2}=>p=2 e^{\frac{\pi-4}{2}}
\end{aligned}
$$

Unit 3

Q3 (a) Solution

The order of a diff. equation in the order of the highest order derivative accruing in the differential equation and the degree of a differential equation is the degree of the highest order derivative resent in the diff. equation.
e.g. $y=x \frac{d y}{d x}+\left(\frac{d y}{d x}\right)^{3}$ is first order third degree diff. equation

Also the elimination of n arbitrary constants leads us to $\mathrm{n}^{\text {th }}$ order derivative and hence a diff equation of $n^{\text {th }}$ order.

Q3 (b) Solution

$$
\frac{d y}{d x}=\frac{Y+\sqrt{x^{2}-y^{2}}}{x}
$$

(homogeneous diff.equation)

$$
\text { Put } \mathrm{Y}=\mathrm{vx} \text { so that } \frac{d y}{d x}=v+x \frac{d v}{d x}
$$

$$
\mathrm{V}+\mathrm{xdv}=\mathrm{v}+\sqrt{1+v^{2}}=>\mathrm{dv}=\mathrm{dx}
$$

Integrating are get

$$
\begin{aligned}
& \log \left\{v+\sqrt{1+v^{2}}\right\}=\log x+\log c \\
\Rightarrow & \mathrm{v}+\sqrt{1+v^{2}}=\mathrm{x} . \mathrm{c} \\
\Rightarrow & \mathrm{y}+\sqrt{x^{2}+y^{2}}=\mathrm{c} x^{2}
\end{aligned}
$$

Q3 (c) Solution

Equation is $\frac{d B}{d t}=k B$ where solution is $\mathrm{B}(\mathrm{t})=C e^{k t}$
Let B_{0} be the initial population at $t=0$ using the condition $B_{0}=c e^{0}$
$\therefore \mathrm{c}=\mathrm{B}_{0}$
Thus $B=B_{0} \mathrm{e}^{k t}$
Since population triples i.e. becomes $3 B_{0}$ between noon and 2 PM , i.e. in two hours, we use this condition to find k

$$
\begin{aligned}
& 3 \mathrm{~B}_{0}=\mathrm{B}_{0} \mathrm{e}^{\mathrm{k}-2} \\
& \text { Thus } \mathrm{k}=\frac{1}{2} \ln 3=0.54930
\end{aligned}
$$

To find the time at which the population become 100 times the original, i.e. , 100 B_{0}, we put $B=100 B_{0}$ in the above equation and solve for t.

$$
100 \mathrm{~B}_{0}=\mathrm{B}_{0} \mathrm{e}^{0.3854930 \mathrm{t}}
$$

Solving $t=\frac{\ln 100}{0.54930}=8.3837015$
i.e. , at 8.383 PM the population becomes the ` 100 times the original population.

Q3(d) Solution

Putting $x={ }^{z}$ so that $z=\log x$ and
Let $D \equiv \frac{d}{d z}$
Then the given diff. equation reduces to
$[D(D-1)(D-2)+3 D(D-1)+D+1] y=e^{z}+z$
$\Rightarrow\left(D^{3}+1\right) y=e^{z}+z ;$ A.e is $m^{3}+1=0$
$\Rightarrow(\mathrm{m}+)\left(\mathrm{m}^{2}-\mathrm{m}+1\right)=0 \Rightarrow \mathrm{~m}=-1, \frac{1 \pm \sqrt{3 i}}{2}$
$\Rightarrow \therefore$ C.F. $=\mathrm{C}_{1} \mathrm{e}^{-\mathrm{z}}+\mathrm{e}^{\mathrm{z} / 2}\left(\mathrm{C}_{2} \cos \frac{\sqrt{3}}{2} \mathrm{z}+\mathrm{C}_{3} \sin \frac{\sqrt{3}}{2} \mathrm{z}\right)$
\Rightarrow P.I. $=\frac{1}{D^{3}+1}\left(e^{z}+z\right)=\frac{1}{\left(D^{3}+1\right)} e^{z}+\frac{1}{\left(D^{3}+1\right)}(z)$
$\Rightarrow \frac{\mathrm{e}^{\mathrm{z}}}{\mathrm{z}}+\left(1+\mathrm{D}^{3}\right)^{-1}(\mathrm{z})=\frac{\mathrm{e}^{\mathrm{z}}}{\mathrm{z}}+\left(1-\mathrm{D}^{3}\right)(\mathrm{z}) \quad$ (Leaving higher order terms)
$\Rightarrow \frac{e^{z}}{z}+z$
\therefore The complete solution is
$\mathrm{Y}=\mathrm{C}_{1} \mathrm{e}^{-\mathrm{z}}+\mathrm{e}^{\mathrm{z} / 2}\left(\mathrm{C}_{2} \cos \frac{\sqrt{3}}{2} z+\mathrm{C}_{3} \sin \frac{\sqrt{3}}{2} z\right)+\frac{e^{z}}{2}+\log x$
$\therefore \mathrm{Y}=\frac{C_{1}}{x}+\sqrt{x}\left[\mathrm{c}_{2} \cos \frac{\sqrt{3}}{2}(\log x)+C_{3} \sin \frac{\sqrt{3}}{2}(\log x)\right]+\frac{x}{2}+\log x$
Where C_{1} and C_{2} are the arb. Constant.

Q 3 (e) Solution

$\left(\mathrm{D}^{2}-2 \mathrm{D}+\mathrm{I}\right) \mathrm{Y}=\mathrm{e}^{\mathrm{x}} \tan x$
A.e. $m^{2}-2 m+2=0 ; m=1 \pm i$
\therefore C.F. $=\mathrm{e}^{\mathrm{x}}\left[C_{1} \cos x+C_{2} \sin x\right]$
So $\mathrm{Y}_{1}=e^{x} \cos x, \quad \mathrm{Y}_{2}=e^{x} \sin x$
$\mathrm{W}=\left|\begin{array}{ll}Y_{1} & Y_{2} \\ Y_{1}^{\prime} & Y_{2}^{\prime}\end{array}\right|=\mathrm{e}^{2 \mathrm{x}}$
P.I. $=-Y_{1} \int \frac{Y_{2} R}{W} d x+Y_{2} \int \frac{Y_{1} R}{W} d x$

$$
=-e^{x} \cos x \int \frac{e^{x} \sin x \cdot e^{x} \tan x}{e^{2 x}} d x+e^{x} \sin x \int \frac{e^{x} \cos x \cdot e^{x} \tan x}{e^{2 x}} d x
$$

$=-e^{x} \cos x \int \frac{\sin ^{2} x}{\cos x}+e^{x} \sin x \int \sin x d x$
$=-e^{x} \cos x \log (\sec x+\tan x)$
\therefore C.S. is $Y=e^{x}\left[C_{1} \cos x+C_{2} \sin x\right]-e^{x} \cos x \log (\sec x+\tan x)$

Unit 4

Q 4(a) Solution

Rank of $A \leq 3$ since A is of $3^{\text {rd }}$ order
$|A|=0$ Now since $|A|=0$, rank of $\mathrm{A}<3$
i.e, $r(A) \leq 2$

Consider the determinant of $2^{\text {nd }}$ order sub matrices all second order determinants are equal to 0 .
Since A is a non zero matrix. $R(A)>0$
Thus the rank of A is one
Rank can be deduced by eliminatory transformation also

Q 4(b) Solution

$A X=0$

$$
\left[\begin{array}{ccc}
1 & 3 & -2 \\
2 & -1 & 4 \\
1 & -11 & 14
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
A \sim\left[\begin{array}{ccc}
1 & 3 & -2 \\
0 & 1 & -8 / 7 \\
0 & 0 & 0
\end{array}\right], \quad \text { i.e. } \varrho(A)=z=r .
$$

But the number of variables $=3$
As $n-r=3-2=1$, the equation have infinite no. of solution
$\underset{\text { or }}{\left[\begin{array}{ccc}1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$x+3 y-2 x=0$
$y-8 / 7 z=0$
Choose $\mathrm{z}=\mathrm{k}$ and solving
we get $\mathrm{x}=-\frac{10}{7} k, y=\frac{8}{7} k \& z=k$

Q 4(c) Solution

Let X be an eigen value of A . then
$A X=\lambda X \Rightarrow A^{-1}(A X)=A^{-1}(\lambda X)=>\left(A^{-1} A\right) X=\lambda\left(A^{-1} X\right) \Rightarrow X=\lambda\left(A^{-1} X\right)$
$\Rightarrow \frac{1}{\lambda} X=A^{-1} X=>A^{-1} X=\lambda^{-1} X$
λ^{-1} is an eigen value of A^{-1} and X is a corresponding eigen vector. Conversely suppose that k is an eigen value of A^{-1}
.since A is a non singular, A^{-1} is non singular

$$
\Rightarrow \frac{1}{k} \text { is an eigen value of } \mathrm{A}
$$

$\Rightarrow \quad$ thus each eigen value of $A^{-1} n$ equal to the reciprocal of some eigen value of A

Q 4 (d) Solution

$|A-\lambda I|=0$
$\left[\begin{array}{ccc}-2-\lambda & 2 & -3 \\ 2 & 1-\lambda & -6 \\ -1 & -2 & -\lambda\end{array}\right]=0$
Or $(-2-\lambda)[-\lambda(1-\lambda)-12]-2[-2 \lambda-6]-3[-4+1(1=\lambda)]=0$
Or $\lambda^{3}+\lambda^{2}-21 \lambda-45=0 \Rightarrow \lambda=-3,-3,5$
Corresponding to $\lambda=-3$ the eigen vector are given by
$(\mathrm{A}+3 \mid) \mathrm{X}_{1}=0$, or $\left[\begin{array}{ccc}-1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=0$

We get only independent equation $x_{1}+x_{2}+x_{3}=0$
Let $x_{3}=k_{1}, x_{2}=k_{2}$ then $x_{1}=3 k_{1}-2 k_{2}$
\therefore the eigen vector are given by

$$
\mathrm{X}_{1}=\left[\begin{array}{c}
3 k_{1}-2 k_{2} \\
k_{2} \\
k_{1}
\end{array}\right]=\mathrm{k}_{1}\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]+\mathrm{k}_{2}\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]
$$

Corresponding to $\lambda=5$, the eigen vector are given by

$$
\begin{aligned}
(\mathrm{A}-5 \mathrm{II}) \mathrm{X}_{2}=0 \Rightarrow & {\left[\begin{array}{ccc}
-7 & 2 & -3 \\
2 & -4 & -6 \\
-1 & -2 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& \Rightarrow-7 \mathrm{x}_{1}+2 \mathrm{x}_{2}-3 \mathrm{x}_{3}=0 \\
& \Rightarrow \mathrm{x}_{1}-2 \mathrm{x}_{2}-3 \mathrm{x}_{3}=0 \\
& \Rightarrow-\mathrm{x}_{1}-2 \mathrm{x}_{2}-5 \mathrm{x}_{3}=0
\end{aligned}
$$

4 (e) Solution

Char. Equation is $|A-\lambda I|=0 \Rightarrow\left|\begin{array}{cc}1-\lambda & 2 \\ 4 & 3-\lambda\end{array}\right|=0 ; \lambda=-1,5$
Let
$\lambda^{n} \equiv\left(\lambda^{2}-4 \lambda-5\right) Q(\lambda)+(a \lambda+b)$
Where $Q(\lambda)$ is quotient
Put $\lambda=-1,(-1)^{n}=-a+b$
Put $\lambda=5,5^{n}=5 a+b$
Solving (2) and (3) we get
$\mathrm{A}=\frac{5^{n}-(-1)^{n}}{6}, b=\frac{5^{n}-5(-1)^{n}}{6}$
Replacing λ by matrix A in (1), we get

$$
\begin{array}{rlrl}
\mathrm{A}^{\mathrm{n}} & =\left(\mathrm{A}^{2}-4 \mathrm{~A}-5 \mathrm{I}\right) \mathrm{Q}(\mathrm{~A})+\left(\mathrm{aA} _\mathrm{bI}\right) \\
& =0+\mathrm{aA}+\mathrm{bI} & \quad \text { (by cayley Hamilton theorem then } \\
& =\mathrm{aA}+\mathrm{bI} & \\
& =\left\{\frac{5^{n}-(-1)^{n}}{6}\right\}\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]+\left\{\frac{5^{n}+5(-1)^{n}}{6}\right\}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{array}
$$

Unit 5

Q 5 (a) Solution

Two propositional $P(p, q, \ldots$.$) and Q(p, q, \ldots .$.
Are said to be logically equivalent or simply equivalent if they have identical thruth tables The truth table of the statement $(p \vee q) \wedge(\sim p \wedge \sim q)$

p	q	pvq	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$(\sim \mathrm{p} \wedge \sim \mathrm{q})$	$(\mathrm{pVq}) \wedge(\sim \mathrm{p} \wedge \sim \mathrm{q})$
T	T	T	F	F	F	F
T	F	T	F	T	F	F
F	T	T	T	F	F	F
F	F	F	T	T	T	F

statement has its value F for all, then it is Contradiction.

Q 5 (b) Solution

Let n vertices be $v_{1}, v_{2}, v_{3}, \ldots \ldots . v_{n}$.
The no of edges drawn from v_{1} to all other vertices are $(n-1)$.
The no of edges drown from $v_{2} \&$ all other vertices except v_{1} are $(n-2)$
Similarly we can do for $v_{3}, v_{4}, v_{5}, \ldots \ldots \ldots \ldots \ldots \ldots . . v_{n}$
Hence the total no of edges

$$
=(n-1)+(n-2)+\ldots \ldots \ldots 2+1=\frac{1}{2} n(n-1)
$$

Q5 (c) Solution

Representation of A is $(z \vee y) \wedge(x \vee z)$ for $B x \vee(a \wedge z)$
So we have $(x \vee(a \wedge z)) \wedge z$
(A) And (B) are parallel. Hence the Boolean function for the whole circuit is

$$
\begin{aligned}
& (x \vee y) \wedge(x \vee z) \vee(x \vee(x \wedge z)) \wedge z \\
& =x \wedge(x \vee y) \vee y \wedge(x \vee z) \vee(x \wedge z) \\
& =x \vee(y \wedge x) \vee(y \wedge z) \vee(x \wedge z) \\
& =x \vee(x \wedge z) \vee(y \wedge z) \\
& =x \vee(y \wedge z)
\end{aligned}
$$

Q 5 (d) Solution
$\sum_{i=0}^{k} n_{i}^{2} \geq n^{2}-(k-1)(2 n-k)$
We know that
$\sum_{i=0}^{k}\left(n_{i}-1\right)=n-k$ Squaring both sides
We get $\left(\sum_{i=0}^{k}\left(n_{i}-1\right)\right)^{2}=\mathrm{n}^{2}+\mathrm{k}^{2}-2 \mathrm{nk}$
Or
$\sum_{i=1}^{k}\left(n_{i}^{2}-2 n_{i}\right)+k+$ non - negative cross term $=n^{2}+k^{2}-2 n k$
Because $\left(n_{i}-1\right) \geq 0$ for all i
Therefore $\sum_{i=1}^{n} n_{i}^{2} \leq n^{2}+k^{2}-2 n k-k+2 n$

$$
=n^{2}-(k-1)(2 n-k)
$$

Q 5 (e) Solution

$$
\begin{aligned}
\text { Ss } f(x, y, z) & =x \cdot y^{\prime}+x \cdot z+x \cdot y \\
& =x \cdot y^{\prime}+x \cdot z+x \cdot y=x\left(y^{\prime}+y\right)+x \cdot z \\
& =x+x \cdot z=z x \cdot(1+z) \quad(\because 1+z=1) \\
& =x \cdot 1=x \\
& =x\left(y+y^{\prime}\right) \cdot\left(z+z^{\prime}\right) \\
& =\left(x \cdot y+x \cdot y^{\prime}\right)\left(z+z^{\prime}\right) \\
& =x \cdot y \cdot z+x \cdot y \cdot z^{\prime}+x \cdot y^{\prime} \cdot z+x \cdot y^{\prime} \cdot z^{\prime}
\end{aligned}
$$

