Engineering Mathematics

Q1. (a) Solution.

Let f(x) = log(1 + x)f(0) = log 1=0Then

$$f'(x) = \frac{1}{(1+x)}$$
, $f'(0) = 1$
 $f''(x) = (-1)(1+x)^{-2}$, $f''(0) = -1$

And so on....

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots \dots \dots$$

$$\therefore \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \dots \dots$$

Q1. (b) Solution.

A function f(x, y) is said t be homogeneous of degree (or order) n in the variables x and y if it can be expressed in the form

$$x^n \phi(y/x)$$
 or $y^n \phi(x/y)$

Composite functions - (i) if u = f(x, y) where $x = \emptyset$ (f) and y = x(t) then u is called a composite function of (the single variable) t and we can find $\frac{du}{dt}$.

(ii) if x = f(x, y) where $x = \emptyset(u, v)$ and y = x(u, v) then x is called a composite function of (two variables) u and v so that we can find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ them on Homogeneous function of degree n in x and y, then

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} nu u = x^n f(\frac{y}{x}) ; \frac{\partial u}{\partial x} = n x^{n-1} f(\frac{y}{x}) + x^n f'(\frac{y}{x})(-\frac{y}{x^2})$$

Adding equation (1) and (2) we get

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = nx^n f(\frac{y}{\chi}) = nu$$

Q1.(c) Solution.

Here
$$f(x, y) = x^3 + y^3 - 3axy$$

 $f_x = 3x^2 - 3ay$, $f_y = 3y^2 - 3ax$, $r = f_{xx} = 6x$
 $S = f_{xy} = -3a$, $t = f_{yy} = 6y$

Now

 f_x =0 & f_y = 0 $\,$ and solving both we get two stationary points (0, 0) and (a , a) Now

Q1. (d) Solution.

The circum radius of a triangle ABC is given by

$$R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}$$

Now

 $a= 2R \sin A$

Differentially are get da = 2R Cos A d_A or $d_a/_{\cos A}$ = 2Rd_A

$$\frac{d_b}{\cos B} = 2Rd_B \quad \& \quad \frac{d_c}{\cos C} = 2Rd_C$$

Adding all three we get $\frac{d_a}{\cos A} + \frac{d_b}{\cos B} + \frac{d_c}{\cos C} = 2R(d_A + d_B + d_C)$
$$= 0 \quad (A+B+C = \pi),$$

Q1 (e) Solution:

Equation of the curve is $Y = c \cosh(\frac{x}{c})$ (1) Diff. (1) w. r .to x, $y1 = c \sinh(\frac{x}{c}) * \frac{1}{c} => y_1 = \sinh(\frac{x}{c})$ Again diff. w. r. to x, we get $y_2 = \frac{1}{c} \cosh \frac{x}{c}$ $\therefore \varrho = \frac{(1+y_1^2)^{3/2}}{y_2} = \frac{(1+\sinh^{2x}/c)^{3/2}}{\frac{1}{c} \cosh \frac{x}{c}} = \frac{(\cos h^2)^{3/2}}{\frac{1}{c} \cosh \frac{x}{c}}$ $= c \cosh^2 \frac{x}{c}$ (2)

Now portion of the normal intercepted between the curve and the x-axis -1 enote of Norma $- \chi \sqrt{1 + w^2}$

$$= c \cosh \frac{x}{c} \sqrt{1 + \sinh^2 x/c} = c \cosh \frac{x}{c} \cosh \frac{x}{c} = c \cosh^2 \frac{x}{c} \dots (3)$$

From (2) & (3), we have ϱ = Length of normal

Again $\frac{\varrho}{(\text{ordina})}$

$$\frac{1}{(te)^2} = \frac{\varrho}{y^2} = \frac{c \cosh^2(x/c)}{c^2(\cosh^2(x/c))} = \frac{1}{c}$$

 $\therefore \varrho$ varies as y², i.e., as square of the ordinate

Q2 (a) Solution

Gamma function if n is true, then

 $\int_0^\infty e^{-x} x^{n-1} dx$, which is a function o x is called the Gamma function and

it denoted by Γx .

Beta function – If m, n is positive, then the definite integral $\int_0^1 x^{m-1} (1-x)^{n-1} dx$, which is a function of m and n, is called the Beta function and is denoted by $\beta(m, n)$.

3 (m, n) =
$$\int_0^1 x^{m-1} (1-x)^{n-1} dx$$
, m>0, n>0

Symmetry of Beta function B (m, n) = $\int_0^1 x^{m-1} (1-x)^{n-1}$, m > 0, n > 0Now since

$$\int_0^a f(x)dx = \int_0^a f(a-x)dx$$

B (m, n) = $\int_0^1 (1-x)^{m-1} [1-(1-x)]^{n-1}dx = \int_0^1 x^{n-1} (1-x)^{m-1}dx = \beta (n,m)$

Q2 (b) Solution

Given limit shows that the region of integration is bounded by the curves

Y = e^x, Y =e X = 0, x = 1 Hence $\int_0^1 \int_{e^x}^e \frac{dydx}{\log y} = \int_1^e \int_0^{\log y} \frac{dxdy}{\log y}$ $= \int_1^e (\frac{x}{\log y})_0^{\log y} dy$

Q2 (c) Solution

 $\int_{a}^{b} \sin x \, dy = \lim_{h \to \infty} h[\sin a + \sin(a+h) + \sin(a+2h) + \dots + \sin(a+n-1)h]$

Where nh = b - a

$$= \lim_{h \to \infty} 2\left\{\frac{\frac{1}{2}h}{\sin\frac{1}{2}h}\right\} \cdot \sin\left(\frac{b-a}{2}\right) \cdot \sin\left(\frac{b-a-h}{2}\right)\}$$
$$= \cos a - \cos b$$

Q2 (d) Solution

Required volume $= 2 \int_{-2}^{2} \int_{0}^{\sqrt{4-Y^{2}}} Z \, dx \, dy$ $= 2 \int_{-2}^{2} \int_{0}^{\sqrt{4-Y^{2}}} (4-Y) \, dx \, dy$ $= 2 \int_{-2}^{2} (4-Y) [x]^{\sqrt{4-Y^{2}}} \, dy$ $= 2 \int_{-2}^{2} (4-Y) \sqrt{4-Y^{2}} \, dy = 16\pi$ P P X

Q2 (e) Solution

Let
$$P = \lim_{h \to \infty} \left[\left(1 + \frac{1}{n^2} \right) \left(1 + \frac{2^2}{n^2} \right) \dots \left(1 + \frac{n^2}{n^2} \right)^{1/4}$$

Taking log on both sides are getting
 $\log p = \lim_{h \to \infty} \frac{1}{4} \left[\log \left(1 + \frac{1^2}{n^2} \right) + \log \left(1 + \frac{2^2}{n^2} \right) + \dots \dots + \log \left(1 + \frac{n^2}{n^2} \right) \right]$
 $= \lim_{h \to \infty} \frac{1}{4} \sum_{r=0}^n \log \left(1 + \frac{r^2}{n^2} \right) = \int_0^1 1 \log(1 + n^2) \, dx$
 $\therefore \log p - \log 2 = \frac{\pi - 4}{2}$
 $\Rightarrow \log \frac{p}{2} = \frac{\pi - 4}{2} \implies p = 2e^{\frac{\pi - 4}{2}}$

<u>Unit 3</u>

Q3 (a) Solution

The order of a diff. equation in the order of the highest order derivative accruing in the differential equation and the degree of a differential equation is the degree of the highest order derivative resent in the diff. equation.

e.g. $y = x \frac{dy}{dx} + (\frac{dy}{dx})^3$ is first order third degree diff. equation

Also the elimination of n arbitrary constants leads us to nth order derivative and hence a diff equation of nth order.

Q3 (b) Solution

$$\frac{dy}{dx} = \frac{Y + \sqrt{x^2 - y^2}}{x}$$
(homogeneous diff.equation)
Put Y=vx so that $\frac{dy}{dx} = v + x \frac{dv}{dx}$
V+xdv = v+ $\sqrt{1 + v^2}$ => dv = dx
Integrating are get
 $\log\{v + \sqrt{1 + v^2}\} = \log x + \log c$
 $\Rightarrow v + \sqrt{1 + v^2} = x.c$
 $\Rightarrow y + \sqrt{x^2 + y^2} = c x^2$

Q3 (c) Solution

Equation is $\frac{dB}{dt} = kB$ where solution is B(t) = $C e^{kt}$ Let B_0 be the initial population at t=0 using the condition $B_0 = ce^0$ \therefore c= B₀ Thus $B = B_0 e^{kt}$ Since population triples i.e. becomes 3 B₀ between noon and 2 PM , i.e. in two hours, we use this condition to find k $3B_0 = B_0 e^{k-2}$

Thus $k = \frac{1}{2} \ln 3 = 0.54930$

To find the time at which the population become 100 times the original, i.e., 100 B_0 , we put B = 100 B_0 in the above equation and solve for t.

100 $B_0 = B_0 e^{0.3854930t}$ Solving t= $\frac{\ln 100}{0.54930}$ = 8.3837015

.i.e., at 8.383 PM the population becomes the `100 times the original population.

Q3(d) Solution

Putting x = ^z so that z= logx and
Let D =
$$\frac{d}{dz}$$

Then the given diff. equation reduces to
[D(D-1)(D-2)+3D(D-1)+D+1]y = e^z + z
 \Rightarrow (D³+1) y =e^z + z ; A.e is m³+1 = 0
 \Rightarrow (m+)(m²-m+1)= 0 => m=-1, $\frac{1\pm\sqrt{3}i}{2}$
 $\Rightarrow \therefore C.F. = C_1e^{-z}+e^{z/2}(C_2 \cos\frac{\sqrt{3}}{2}z + C_3 \sin\frac{\sqrt{3}}{2}z)$
 $\Rightarrow P.I. = \frac{1}{D^3+1}(e^z + z) = \frac{1}{(D^3+1)}e^z + \frac{1}{(D^3+1)}(z)$
 $\Rightarrow \frac{e^z}{z} + (1+D^3)^{-1}(z) = \frac{e^z}{z} + (1-D^3)(z)$ (Leaving higher order terms)
 $\Rightarrow \frac{e^z}{z} + z$

: The complete solution is

$$Y = C_1 e^{-z} + e^{z/2} (C_2 \cos \frac{\sqrt{3}}{2}z + C_3 \sin \frac{\sqrt{3}}{2}z) + \frac{e^z}{2} + \log x$$

$$\therefore Y = \frac{c_1}{x} + \sqrt{x} [c_2 \cos \frac{\sqrt{3}}{2} (\log x) + C_3 \sin \frac{\sqrt{3}}{2} (\log x)] + \frac{x}{2} + \log x$$

Where C₁ and C₂ are the arb. Constant.

Q 3 (e) Solution

$$(D^{2}-2D + I)Y = e^{x} \tan x$$

A.e. m²-2m+2 = 0 ; m= 1± i
 \therefore C.F. = $e^{x}[C_{1} \cos x + C_{2} \sin x]$
So Y₁ = $e^{x} \cos x$, Y₂ = $e^{x} \sin x$
W = $\begin{vmatrix} Y_{1} & Y_{2} \\ Y'_{1} & Y'_{2} \end{vmatrix}$ = e^{2x}
P.I. = -Y₁ $\int \frac{Y_{2}R}{W} dx + Y_{2} \int \frac{Y_{1}R}{W} dx$

 $= -e^x \cos x \int \frac{e^x \sin x \cdot e^x \tan x}{e^{2x}} dx + e^x \sin x \int \frac{e^x \cos x \cdot e^x \tan x}{e^{2x}} dx$ $= -e^x \cos x \int \frac{\sin^2 x}{\cos x} + e^x \sin x \int \sin x dx$ $= -e^x \cos x \log(\sec x + \tan x)$ $\therefore \text{ C.S. is } Y = e^x [C_1 \cos x + C_2 \sin x] - e^x \cos x \log(\sec x + \tan x)$

<u>Unit 4</u>

Q 4(a) Solution

Rank of $A \le 3$ since A is of 3^{rd} order |A| = 0 Now since |A| = 0, rank of A<3 *i.e.*, $r(A) \le 2$ Consider the determinant of 2^{nd} order sub matrices all second order determinants are equal to 0. Since A is a non zero matrix. R(A) > 0Thus the rank of A is one

Rank can be deduced by eliminatory transformation also

Q 4(b) Solution

$$\begin{aligned} \mathsf{AX} &= 0 \\ \begin{bmatrix} 1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ A &\sim \begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & -\frac{8}{7} \\ 0 & 0 & 0 \end{bmatrix}, \quad i.e.\,\varrho(A) = z = r. \end{aligned}$$

But the number of variables = 3

As n-r = 3-2 = 1, the equation have infinite no. of solution

 $\begin{bmatrix} 1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ or x + 3y -2x = 0 y - $\frac{8}{7}$ z =0 Choose z= k and solving we get x = $-\frac{10}{7}$ k, y = $\frac{8}{7}$ k & z = k

Q 4(c) Solution

Let X be an eigen value of A. then $AX = \lambda X => A^{-1}(AX) = A^{-1}(\lambda X) => (A^{-1}A)X = \lambda(A^{-1}X) => X = \lambda(A^{-1}X)$ $=> \frac{1}{\lambda} X = A^{-1}X => A^{-1}X = \lambda^{-1}X$ λ^{-1} is an eigen value of A^{-1} and X is a corresponding eigen vector. Conversely suppose that k is an eigen value of A^{-1} .since A is a non singular, A^{-1} is non singular

 $\Rightarrow \frac{1}{k}$ is an eigen value of A

 \Rightarrow thus each eigen value of A^{-1} n equal to the reciprocal of some eigen value of A

Q 4 (d) Solution

 $|A - \lambda I| = 0$ $\begin{bmatrix} -2 - \lambda & 2 & -3 \\ 2 & 1 - \lambda & -6 \\ -1 & -2 & -\lambda \end{bmatrix} = 0$ Or $(-2 - \lambda)[-\lambda(1 - \lambda) - 12] - 2[-2\lambda - 6] - 3[-4 + 1(1 = \lambda)] = 0$ Or $\lambda^3 + \lambda^2 - 21\lambda - 45 = 0 \implies \lambda = -3, -3, 5$ Corresponding to $\lambda = -3$ the eigen vector are given by $(A+3I)X_1 = 0, \text{ or } \begin{bmatrix} -1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$

We get only independent equation $x_1+x_2+x_3 = 0$ Let $x_3 = k_1$, $x_2 = k_2$ then $x_1 = 3k_1 - 2k_2$ \therefore the eigen vector are given by $[3k_1 - 2k_2]$ [3] [-2]

$$X_1 = \begin{bmatrix} k_1 \\ k_2 \\ k_1 \end{bmatrix} = k_1 \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} + k_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

Corresponding to $\lambda = 5$, the eigen vector are given by

$$(A-5I) X_{2} = 0 \Longrightarrow \begin{bmatrix} -7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\Rightarrow -7x_{1}+2x_{2}-3x_{3} = 0$$
$$\Rightarrow x_{1}-2x_{2}-3x_{3} = 0$$
$$\Rightarrow -x_{1}-2x_{2}-5x_{3} = 0$$

4 (e) Solution

Char. Equation is $|A - \lambda I| = 0 \implies \begin{vmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{vmatrix} = 0$; $\lambda = -1,5$ Let

 $\lambda^{n} \equiv (\lambda^{2} - 4\lambda - 5)Q(\lambda) + (a\lambda + b) \dots \dots \dots (1)$ Where Q(λ) is quotient Put $\lambda = -1$, $(-1)^{n} = -a + b \dots \dots (2)$ Put $\lambda = 5$, $5^{n} = 5a + b \dots \dots (3)$ Solving (2) and (3) we get

 $A = \frac{5^{n} - (-1)^{n}}{6}, b = \frac{5^{n} - 5(-1)^{n}}{6}$ Replacing λ by matrix A in (1), we get $A^{n} = (A^{2} - 4A - 5I) Q(A) + (aA_bI)$ = 0 + aA + bI (by cayley Hamilton theorem then = aA + bI $= \{\frac{5^{n} - (-1)^{n}}{6}\} \begin{bmatrix} 1 & 2\\ 4 & 3 \end{bmatrix} + \{\frac{5^{n} + 5(-1)^{n}}{6}\} \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$

<u>Unit 5</u>

Q 5 (a) Solution

Two propositional P(p,q,) and Q(p,q,)

Are said to be logically equivalent or simply equivalent if they have identical thruth tables The truth table of the statement (pVq) $\wedge(-p\wedge-q)$

р	q	pvq	~p	~q	(~p^~d)	(pVq)
Т	Т	Т	F	F	F	F
Т	F	Т	F	Т	F	F
F	Т	Ţ	Т	F	F	F
F	F	F	Т	Т	Т	F

statement has its value F for all, then it is Contradiction.

Q 5 (b) Solution

Let n vertices be $v_1, v_2, v_3, \dots, v_n$.

The no of edges drawn from v_1 to all other vertices are (n-1).

The no of edges drown from v₂ & all other vertices except v₁ are (n-2)

Similarly we can do for v_3 , v_4 , v_5 , v_n

Hence the total no of edges

 $= (n-1) + (n-2) + \dots + 2 + 1 = \frac{1}{2} n(n-1)$

Q5 (c) Solution

Representation of A is $(z \lor y) \land (x \lor z)$ for B $x \lor (a \land z)$

So we have $(x \lor (a \land z)) \land z$

(A) And (B) are parallel. Hence the Boolean function for the whole circuit is

$$(x \lor y) \land (x \lor z) \lor (x \lor (x \land z)) \land z$$

$$= x \land (x \lor y) \lor y \land (x \lor z) \lor (x \land z)$$

$$= x \lor (y \land x) \lor (y \land z) \lor (x \land z)$$

$$= x \lor (y \land z) \lor (y \land z)$$

$$= x \lor (y \land z)$$
Q 5 (d) Solution

$$\sum_{i=0}^{k} n_i^2 \ge n^2 - (k-1)(2n-k)$$
We know that
$$\sum_{i=0}^{k} (n_i - 1) = n - k \text{ Squaring both sides}$$
We get $(\sum_{i=0}^{k} (n_i - 1))^2 = n^2 + k^2 - 2nk$
Or
$$\sum_{i=1}^{k} (n_i^2 - 2n_i) + k + non - negative \ cross \ term$$

$$= n^2 + k^2 - 2nk$$
Because $(n_i - 1) \ge 0 \ for \ all \ i$
Therefore $\sum_{i=1}^{n} n_i^2 \le n^2 + k^2 - 2nk - k + 2n$

$$= n^2 - (k-1)(2n-k)$$

<u>Or</u>

Q 5 (e) Solution

Ss f(x, y, z) = x.y' + x.z + x.y
= x.y' + x.z + x.y = x (y' + y) + x.z
= x + x.z = zx. (1+z) (
$$\because$$
 1+z=1)
= x.1 = x
= x (y + y').(z + z')
= (x.y + x.y')(z + z')
= x.y.z + x.y.z' + x.y'.z+x.y'.z'